
- 1 -

ROBOT ARM HOBBY V3

© AREXX - THE NETHERLANDS V0513

MOUNTING INSTRUCTIONS: Model RA2-HOBBY

EDUCATIONAL ROBOT

- 2 -

AREXX and ROBOT ARM are registered trademarks of AREXX Engineering - HOLLAND.
© English translation (March 2013): AREXX Engineering (NL).
This manual is protected by laws of Copyright. Any full or partial reproduction of the contents are forbidden with-
out prior written authorization by the European importer. :
AREXX Engineering - Zwolle (NL).

Manufacturer and distributor cannot be held responible for any damage resulting from mishandling, mounting
mistakes or disrespect of the instructions contained in the manual.
Subject to changes without prior notice.

Technical mounting support:

WWW.AREXX.COM

WWW.ROBOTERNETZ.DEManufacturer:
AREXX Engineering
DAGU HI-TECH

European importer:
AREXX Engineering
ZWOLLE The Netherlands

© AREXX Holland and DAGU China
 © English translation: AREXX - The Netherlands

 1. Product description ROBOT ARM 5
 2. Required tools 7
 3. Part list 8
 4. Mounting instructions 10
 5. Electronics 23
 6. Software installation 27
 7. Programmer and Loader 40
 7.1 Robot loader 41
 7.2 Connection of USB interface Windows 42
 7.3 Connection of USB interface LINUX 45
 7.4 Testing the USB interface 46
 7.5 Opening a port Linux 47
 7.6 Selftest 48
 7.7 Calibration 50
 7.8 Keyboard test 52
 8. RACS 53
 9. Programming the ROBOT ARM 59

 xx. APPENDIX
 A. Circuit diagram Robot Arm 68
 B. Circuit diagram Power Supply 69
 C. Circuit diagram Connectors 70
 D. Circuit diagram Keyboard 71
 E. PCB 72

Table of Contents

- 3 -

Impressum
©2007 AREXX Engineering
Nervistraat 16
8013 RS Zwolle
The Netherlands

Tel.: +31 (0) 38 454 2028
Fax.: +31 (0) 38 452 4482

E-Mail: Info@arexx.nl

This manual is protected by the laws of Copyright. It is
forbidden to copy all or part of the contents without prior
written authorization!

Product specifications and delivery contents are subject to
changes. The manual is subject to changes without prior
notice.

You can find free updates of this manual on

http://www.arexx.com/

“Robot Arm PRO und -Hobby” are registered trademarks from AREXX Engineering.
All other trademark are the property of their owners. We are not responsible for the
contents of external web pages that are mentioned in this manual!

Information about limited warranty and responsibility

The warranty granted by AREXX Engineering is limited to the replacement or repair of the
Robot Arm and its accessories within the legal warranty period if the default has arisen from
production errors such as mechanical damage or missing or wrong assembly of electronic
components except for all components that are connected via plugs/sockets.
The warranty does not apply directly or indirectly to damages due to the use of the robot.
This excludes claims that fall under the legal prescription of product responsibility.

The warranty does not apply in case of irreversible changes (such as soldering of other
components, drilling of holes, etc.) of the Robot Arm or its accessories or if the Robot Arm
is damaged due to the disrespect of this manual!

The warranty is not applicable in case of disrespect of this manual! In addition, AREXX
Engineering is not responsible for damages of all kinds resulting from the disrespect of this
manual! Please adhere above all to the „Safety recommendations“ in the Robot Arm
manual.

Please note the relevant license agreements on the CD-ROM!

IMPORTANT
Prior to using this robot arm for the first time, please read this manua thoroughly up to the
end! They explain the correct use and inform you about potential dangers! Moreover they
contain important information that might not be obvious for all users.

Important safety recommendation

This module is equipped with highly sensitive components. Electronic components are
very sensitive to static electricity discharge. Only touch the module by the edges and avoid
direct contact with the components on the circuit board. Please do never overload the servo’s

- 4 -

Symbols

This manual provides the following symbols:

The “Attention!” Symbol is used to mark important details.
Neglecting these precautions may damage or destroy the ro-
bot and/or additional components and additionally you may
risk your own health or the health of other persons!

The “Information” Symbol is used to mark useful tips and
tricks or background information. In this case the informa-
tion is to be considered as “useful, but not necessary”.

Safety recommendations

- Check the polarity of the batteries or power supply.
- Keep all products dry, when the product gets wet remove the batteries or power directly.
- Remove the batteries or power when you are not using the product for a longer period.
- Before taking the module into operation, always check it and its cables for damage.
- If you have reason to believe that the device can no longer be operated safely,
 disconnect it immediately and make sure it is not unintentionally operated.
- Consult an expert if you are unsure as to the function, safety or connection of the module.
- Do not operate the module in rooms or under unfavourable conditions.
- Do not overload the servo’s
- This module is equipped with highly sensitive components. Electronic components are
 very sensitive to static electricity discharge. Only touch the module by the edges and avoid
 direct contact with the components on the circuit board.

Normal use

This product was developed as an experimental platform for all persons which are interested
in robotics. Main goal is to learn how you can program the device in C-langue. This product
is not a toy; it is not suitable for children under 14 years of age!

This robot arm is also not an industrial robot arm, with industrial specifications and
preformance!

It may only be used indoors. The product must not get damp or wet. Also be carful with
condence when you take it from a cold to an warm room give it time to adapt on the new
coditions before you use it.

Any use other than that described above can lead to damage to the product and may
involve additional risks such as short circuits, fire, electrical shock etc.

Please read all the safety instructions of this manual.

- 5 -

1. PRODUCT DESCRIPTION ROBOT ARM

The ROBOT ARM is an affordable robot for the hobbyist. It is ideally
suited to learn the basics of electronics, mechanics and program-
ming. The ROBOT ARM is controlled by a powerful ATMEGA64
microcontroller that is programmable via Open Source Tools in C.
The user can upload his own programs simply and easily via the
supplied USB interface and the Uploader software. The I/O in- and
outputs together with the flexible I2C bus system allow the
addition of extra modules thus enabling the robot to react to its
environment.

Contents of the package:

- Complete Robot Arm construction set
 (mechanics and electronics)
- USB interface with lead
- CD-ROM containing all required software and manuals

1.2.	 Specifications:

 - ATMEGA64 processor
 - Various available I/O in/outputs
 - I2C bus
 - 4 mini-servos DGServo 12g
 - 2 maxi-servos DGServo S07NF STD
 - Plastic arm and metal chassis
 - Arm length: 260 mm
 - Height: 320 mm
 - Base diameter: 150 mm
 - Power supply: 9-14V

* The right of return does not apply after opening the plastic bags containing parts and components.
* Read the manual thoroughly prior to assembling the unit.
* Be careful when handling tools.
* Do not assemble the robot in presence of small children. They can get hurt with the tools
 or swallow small components and parts.
* Check the correct polarity of the batteries.
* Make sure that batteries and holder remain always dry. If the ROBOT ARM gets wet, remove the
 batteries and dry all parts as thoroughly as possible.

 * Remove the batteries if the ROBOT ARM will not be used for more than one week.

Warnings

- 6 -

1.3. What can we do with the Robot Arm?

- Transfer example and new programs into the Robot Arm.
- Control the Robot Arm via a keyboard
- Control and program the Robot Arm via the RACS software.
- Extend the Robot Arm with ready-to-use extension modules
 so that it can hear, feel and see in order to react to its
 environment
- Just as genuine robots can build e.g. cars, this robot can also
 do some tasks for you.
- The Robot Arm can communicate with its environment and
 many other units via its I2C interface.
- Artificial intelligence: The Robot Arm improves its software
 automatically via its selflearning software.

- 7 -

N e e d l e - n o s e
pliers

Sidecutter

2. Required tools

Screwdriver set

Selftapping screws (Parker)

Selftapping screws behave like wood screws i.e.
they cut a thread into the material in a rotating
motion that functions like a nut. To this end, this type
of screw has a larger thread and a sharper tip as a
normal screw.

Selftapping screws have a cutout at the top
that makes it easier to drill into the material.
The best way to fasten such a screw is:

If the screws are loosened and tightened too often, the hole enlargens gradually
and the screw doesn’t fit anymore properly.

1 Drive the screw into the material
2 Slightly loosen the screw
3 Tighten the screw again

The set includes a double open-end wrench. Use this
wrench for the M2 and M3 nuts.
You can use this wrench instead of pliers.

Double open-end wrench:

Locknut

Locknut

Do not force the screws otherwise
the plastic may crack.

Fastening a locknut

Double open-end
wrench

IncludedIncluded

Screwdriver

1

32

- 8 -

3. PART LIST
Servomotor

O 4 x Mini
 DGServo 12g
O 2 x Maxi
 DGServo S07NF STD

Servo disc

O 4x

O 4x

O 1x

Spacer for Servo Cover for
servo holder

O 2x

Disk with
axis

Holder for
maxi-servo

Servo holder
-dual

O 1xO 1xO 4x

Cover for maxi-
servo holder

O 1xO 2x

Servolever

Spacer
M3x6

Spacer
M3x30

O 1xO 1x

O 4x

Spiral

O 1x

USB leadCD Keyboard

O 1x

- 9 -

Servo holder
for finger servo

O 1x O 1xO 1x

FingertipServo holder
Wrist

Coupling rodServo bottom plate

O 1x

O 1x

PCBRobot Arm base

O 1x

Round-head
screw M3x8

Servo screw
small M2x6

O 8x

O 4xO 8x

O 4x

O 4xO 2x

O 4xO 10x

Nut
M3

Round-head screw
M3x10

Selftapping screw
M3.5x8

Selftapping screw
M2.6x6

Selftapping screw
M2.3x8

Locknut M3

Servo screw
large M2.3x6

O 4x

O 1x

Programming
lead

Program
adaptor

O 1xO 1x

Keyboard lead
1,5m

O 1x

Servo exten-
sion lead

O 1x

Round-head
screw M3x6

O 8x
O-Ring M3

O 3x

- 10 -

4. Mounting instructions mechanical

Following parts are required:

Mounting the bottom servo:

1x Bottom plate
1x Maxi-servo
4x Round-head screw M3x8
4x Nut M3

Fasten the servo arm on the servo,
see detailed drawing!

Screw M3x8

Maxi-servo

Servo
Bottom plate

M3 Nut

Mounting the servo arm:

Servo arm screw

Following parts are required:
1x Bottom plate with servo
1x Servo arm
1x Servo screw large M2.3x6

Fasten the servo exactly as described in the
drawings.

Servo arm

- 11 -

Locknut

Mounting the bottom servo:

Following parts are required:
1x Bottom part
1x Maxi-servo holder
4x Servo screw small M2x6

Mount the servo axis on the servo. Please refer to the detailed drawing!

Selftapping screw
M2x6

Disc with
axis

Round-head screw M3x8

Maxi-servo holder

Bottom plate

Mount the servo holder on the
servo arm, please look at the
detailed drawing!

Mounting the servo holder:
Following parts are required:

1x Bottom plate with servo
holder
1x Disc with axis
1x Round-head screw M3x8
1x Locknut M3

Servo holder

Bottom plate

- 12 -

Mounting the servo:
Following parts are required:

1x Assembled bottom plate
1x Servo large
1x Servo spacer
4x Round-head screw M3.5x8

Mount the cover exactly as decribed in
the drawing.

IMPORTANT!
Don’t forget the spacer for the
servo!

Servo

Selftapping screw
M3x10

Bottom plate

Screw M3.5x8

Spacer for the
servo

Mounting the cover for the servo holder:
Following parts are required:

1x Assembled bottom plate
1x Servo holder cover
1x Selftapping screw
 M3x10

Cover

Bottom plate

- 13 -

Mounting the servo arm:
Following parts are required:

1x Assembled bottom plate
1x Servo arm
1x Servo screw large M2.3x6

Servo arm

Servo screw
M2.3x6 Bottom plate

Mount the servo arm exactly as described
in the drawing!

Mounting the servo arm:
Following parts are required:

1x Assembled bottom plate
1x Servo coupling rod
1x Servo screw small M2x6
2x Servo screw large M2.3x6

Mount the servo arm exactly as described in the drawing!

Bottom plate

Servo screw
M2x6

Coupling rod

Servo screw
M2.3x6

TEST!
Can the rod rotate freely at
180 degrees?

- 14 -

Mounting the dual servo:

1x Dual servo holder
2x Disc with axis
2x Round-head screw M3 x 8
2x O-Ring M3
2x Locknut M3
4x Selftapping screw 2.6x6
1x Cover
3x Selftapping screw 2.3x8
2x Servo disc
2x Servo screw small M2x6
2x Servo DGServo 12g

For the final assembly of the dual servo, following parts are required:

Miniservo DGServo 12g

Selftapping screw
2.6x6

Cover for dual servo
holder

Locknut M3

Disc with
axis

Dual servo holder

Round-head screw
M3 x 8

Servo disc

Selftapping screw
2.3x8

Dual servo holder
with servos

Dual servo holder
with servos Servo screw

M2x6

Mount the dual servo exactly and in
the same order as described in the
drawing!

O-Ring M3

- 15 -

Servo holder
wrist

Selftapping screw
2.6x6

Mounting the dual servo holder:
Following parts are required:

1x Assembled bottom plate
1x Dual servo holder
2x Servo screw small M2x6
2x Servo screw large M2.3x6

1x Miniservo DGServo 12g
1x Servo holder wrist
2x Selftapping screw M2.6x6

Mounting the wrist servo:
Following parts are required:

Servo screw
M2.3x6

Bottom plate

Miniservo DGServo 12g

Mount the wrist servo exactly as described in the drawing.

Mount the dual servo exactly as described
in the drawing.

Servo screw
M2x6

TEST!
Can the dual servo rotate
freely at 180 degrees?

- 16 -

Servo disc

Servo screw M2x6

Final assembly of the wrist servo:

1x Assembled wrist
1x Servo disc
1x Servo screw small M2x6

Following parts are required:

Assembled wrist

Mount the servo disc exactly as described in the drawing.

- 17 -

Mounting the finger servo holder:

Following parts are required:

Mount the finger servo holder exactly as described in the drawing.

Round-head screw
M3x8

Finger servo holder

Locknut M3 Servo disc

Assembled wrist

Mounting the finger servo holder:
Following parts are required:

1x Assembled wrist
1x Finger servo holder
1x Servo disc
1x Screw M3x8
1x O-Ring M3
1x Locknut M3

Finger servo holder

Wrist assembly

Mount the servo disc exactly as described in
the drawing.

Servo screw M2x6

1x Assembled wrist
1x Finger servo holder
2x Servo screw small M2x6

TEST!
Can the wrist rotate freely at
180 degrees?

O-Ring M3

- 18 -

Fasten the servo at the servo holder exactly as
described in the drawing

Mounting the finger servo:
1x Assembled wrist
1x Mini servo DGServo 12g
2x Selftapping screw M2.6x6

Following parts are required:

Selftapping screw M2.6x6

Following parts are required:

Mini servo DGServo 12g

Mounting the finger servo holder:
1x Assembled Wrist
1x Servo disc
1x Servo screw small M2x6

Servo screw
M2x6

Assembled
wrist

Fasten the disc on the servo
exactly as described in the
drawing

- 19 -

Fasten the wrist on the arm exactly as described in
the drawing.

Mounting the finger:
1x Assembled wrist
1x Finger
2x Servo screw small M2x6
2x Servo screw large M2.3x6

Following parts are required:

Mount the finger exactly as described in the
drawing.

Assembled
Bottom plate

Assembled
wrist

Finger

Servo screw
M2x6

Final arm assembly:
Following parts are required: 1x Assembled wrist

1x Assembled bottom plate
2x Servo screw small M2x6
2x Servo screw large 2.3x6

Servo screw
M2.3x6

Assembled
wrist

Servo screw
M2.3x6

Servo screw
M2x6

TEST!
Can the finger rotate FREELY?

- 20 -

Mounting the base and the PCB:
1x Metal base
4x Spacer M3x6
1x PCB
4x Spacer M3x30

Following parts are required:

Metal base

Spacer M3x6

PCB

Base

Spacer M3x30

IMPORTANT!
Avoid direct contact with the
components on the circuit board.

- 21 -

Final assembly of the Robot Arm :

Following parts are required:
1x Base assembly
1x ARM assembly
4x Round-head screw M3x6

IMPORTANT!
Complete all the wiring prior to proceeding with these steps. Please refer to the
circuit diagram on page 25 and 51.

Round-head screw
M3x6

- 22 -

READY !

- 23 -

5. ELECTRONICS

5.1. Features and technical data

This section provides an overview of the robot arm features and an introduc-
tion of some basic keywords, to make you familiar with the terminology used
in this manual. Most of these keywords will be explained in later chapters.

Features, components and technical data of the robot arm:

● Powerful Atmel ATMEGA64 8-Bit Microcontroller
 ◊ Speed 16 MIPS (=16 Million Instructions per Second) at 16MHz clock
 frequency
 ◊ Memory: 64KB Flash ROM, 4KB SRAM, 2KB EEPROM
 ◊ Freely programmable in C (using WinAVR / avr-gcc)!

● Flexible expansion system, based on the I²C-Bus
 ◊ Only two signals required (TWI -> “Two Wire Interface”)
 ◊ Transfer speed up to 400kBit/s
 ◊ Master->Slave architecture
 ◊ Up to 127 Slaves may be connected to the bus simultaneously
 ◊ Very popular bus-system. The market provides a lot of standard ICs,
 sensors and other components, which may often be connected directly.

● Mounting possibilities for wireless modules
 ◊ RP6 WIFI
 ◊ Bluetooth
 ◊ APC-220

● USB PC Interface for program uploads from PC to microcontroller
 ◊ Wired connection for maximum transfer speed. Program upload will
 usually run at 500kBaud, filling the total free memory space
 (30KB, 2KB are reserved for the Bootloader) within seconds.
 ◊ The interface may be used for programming all available expansion
 modules for the robot arm with AVR Microcontrollers
 (RP6-256-WIFI module).
 ◊ It may be used for communication between the robot and expansion
 modules. For example you can use this for debugging purposes by
 transferring measurement data, text messages and other data to the PC.
 ◊ The interface driver provides a virtual comport (VCP) for all popular
 operating systems including Windows 2K/XP/Vista and Linux. The VCP can
 be used in standard terminal programs and customized software.

- 24 -

- New TI TPS54332 DC/DC converter, 3500mA
- New LDO voltageregulator for the 5V microprocessor power
- Extra power supply connectors for VCC and Servo power
- 6 pre amplifiers for current measurement of all servos over a shunt resistor
- The Reset switch is now a start/stop switch to start and stop operation
 of the program.
- Autostart (= the program starts automatically shortly after switching on) can
 be configured through the robotloader if you like.
- Extra extension connectors with all free I/O Pins from the ATMEGA64.
- I2C Bus connexion, compatible with RP6 XBUS extension modules, for
 example the RP6-M256 WLAN Module.
- Socket for APC220 or Bluetooh wireless module.
- 4 blue status LEDs instead of a green/red LED-pair.
- 4A fuse.
- 16.000 MHz Crystal instead of 16.384MHz.
- Pull-up resistors for the I2C Bus are located on the PCB now.
- On/off switch separates the Logic. The servo power from the DC/DC
 converter is controlled by the microprocessor.
- Input power is 7 - 14 Volt (absolute maximum is 18 Volt)

ROBOT ARM EXTENSIONS

- RP6v2-M256-WIFI Module to control the robot wireless arm over a network
- ARX-APC220 for RACS 433 MHz wireless control
- ARX-BT03 for ANDROID wireless bluetooth control

See also the AREXX APC-220, Android and WIFI module manuals

5.2. Modifications V3 PCB type RA1 PRO and RA2-HOBBY

- 25 -

5.3. Terminal assignment on the main PCB

Start
Stop
Reset

I2C & RP6
X-BUS
WIFI

SPI

EIN / AUS
Schalter

LEDS
1,2,3,4

Tastatur

ISP

PROGRAMM / UART

Servo power

DC Spannungs
Buchse

Batterie anschluß
Drahtlos Module
Bluetooth
APC-220

SW1/SW2
Switch I/O

Sicherung 4A

I/O

On the robot arm mainboard are a few LEDs, here folows a short explanation;
The yellow LED “MAIN_PWR” shows if there is an external voltage and if the robot is
switched on.

the red LED “SERVO_PWR” only burns when the DC/DC convertor for the servo power
is switched on by the mikroprocessor. This is controlled by the software.

There are 4 blue status LEDs “SL1 - 4” which are controlled directly by the
microprocessorn die 4 blauen Status LEDs. You can use these LEDs freely for your
own program applications.

5.4 LEDS

Power
LED

Servo
LED

Boot/ISP
Important!

See also page 51
how to connect the
Servos to the PCB

- 26 -

5.5. Starting the Robot

1. First check all mechanical assembly and electronic of the
 robot arm, connect the servos (see page 25 and 51).
2. Connect the power 9- to 14V (18 V = absolute max.).
3. Switch the robot on with the main On/Off switch.

Voltage supply

Mains adaptor
There are 2 options to power the robot. The easiest solution is to
connect a mains adaptor with an output voltage of 9-14V / 3-4 Amps
to the DC input.This way, the voltage is connected to the INPUT of the
voltage regulator.

Batteries
The second solution is to connect a battery to the battery terminal
(9-14V). If the voltage drops below < 6.7 V, a warning is displayed.

As soon as the Robot Arm is connected to a power supply, the servos
move slightly and the yellow LED (Power LED) lights up.

So, the start was not as difficult as that and it looks, as if the job is
finished now. The real hard work does only start now.....!

But.... first, let’s look at chapter 6 in which we will install the software

DC Terminal
9 to 14 Volt

Battery terminal
9 to 14 Volt

Important!
The “ISP/BOOT” Jumper
should be in left position for
normal use, see picture below.

- 27 -

6. Software Installation
Let’s do now the software installation. A properly installed software
is of paramount importance for all following chapters.

As you need administrator rights, you have to log into your system
as an administrator!

We recommend to read the whole chapter thoroughly first and then
start with the installation step by step.

The user must have basic knowledge of Windows or Linux based
computers and be familiar with current programs such as file mana-
gers, web browsers, text editors, file compression software (WinZip,
WinRAR, unzip and others.) and eventually Linux shell etc.! If your
computer knowledge is very limited, you should learn more about
systems before you start using the Robot Arm. This manual is not
intended as an introduction to computers which would go much too
far! It is only aimed at the Robot Arm, its programming and the spe-
cific software required.

The Robot Arm CD-ROM
You have probably already inserted the CD-ROM into your computer
drive - if not, please do it now! In Windows, the CD menu should
appear shortly afterwards per autostart. If not, you can open the file
“start.htm” with a web browser as e.g. Firefox in the main directory
of the CD via a file manager. By the way, the installation files for
Firefox are also on the CD in the folder

<CD-ROM drive>:\Software\Firefox

if ever you haven’t installed an updated web browser (it should be
at least Firefox 1.x or Internet Explorer 6 ...)

After the language selection, you will find in the CD menu, in ad-
dition to this manual (that you can also download from our home
page), information, data sheets and pictures also the menu item
“Software”. It contains all software tools, USB drivers and example
programs with source code for the Robot Arm.

Depending on the safety settings of your web browser, you can start
the installation programs directly from the CD!

- 28 -

If the safety settings of your web browser don’t allow a direct in-
stallation from the CD-ROM, you have to copy the files first into a
directory on your hard disc and start the installation from there.
For more details please refer to the software page in the CD menu.
Alternatively, you can also switch to the CD drive via a file manager
and install the software from the CD. The names of the directories
are self-explanatory so that you can allocate them easily to the cor-
responding software packages and operating systems.

WinAVR - for Windows

We will start with the installation of WinAVR. WinAVR is - as the
name says - only available for Windows!

Linux users can skip to the next section.
WinAVR (pronounce like the word “whenever”) is a collection of
many useful and necessary programs for the software development
for AVR micro controllers in C language. In addition to the GCC for
AVR (designated by the term “AVR-GCC”, more details later) WinAVR
includes the convenient source text editor “Programmers Notepad 2”
that we will also use for the program development of the Robot Arm.

WinAVR is a private project that is not supported by a company. It is
available for free in the internet. You will find updated versions and
more information at:

http://winavr.sourceforge.net/

In the meantime the project gets the official support from ATMEL
and the AVRGCC is available for AVRStudio, the development envi-
ronment for AVR’s from ATMEL. However we will not describe it in
this manual as Programmers Notepad is much better suited for our
purpose.
The WinAVR installation file is on the CD in the folder:

<CD-ROM drive>:\Software\AVR-GCC\Windows\WinAVR\

The installation of WinAVR is simple and self-explanatory. Normally
you don’t need to change any settings. So, just click on “Continue”!

- 29 -

If you use Windows Vista or Windows 7, you must install the latest
version of WinAVR! It should also work perfectly with Windows 2K
and XP. If not, you can try one of the older versions that are also on
the CD (before you make a new installation of WinAVR, you have to
uninstall the existing version first!). Officially Win x64 is not yet sup-
ported but the CD contains a patch for Win x64 systems if a problem
arises. You will find more information on the software page of the
CD menu.

AVR-GCC, avr-libc uad avr-binutils - for Linux

(Windows users can skip this section!)

Linux might require more effort. Some distributions already contain
the required packages but they are mostly obsolete versions. The-
refore you need to compile and install newer versions. It is impos-
sible to describe in detail the numerous Linux distributions as SuSE,
Ubuntu, RedHat/Fedora, Debian, Gentoo, Slackware, Mandriva etc.
that exist in many versions with their own particularities and we will
keep here only to the general lines.

The same applies to all other Linux sections in this chapter!

The procedure described here must not necessarily work for you.
It is often helpful to search in the internet e.g. for “<LinuxDistribu-
tion> avr gcc” or similar. (Try different spellings). The same applies
to all other Linux sections - of course with the suitable keywords! If
you encounter problems with the installation of the AVR-GCC, you
can also take a look in our robot network forum or in one of the
numerous Linux forums. First of all, you have to uninstall already
installed versions of the avr-gcc, the avr-binutils and the avr-libc
because, as said, these are mostly obsolete. You can do that via the
package manager of your distribution by searching for “avr” start up
and uninstall the three above mentioned packages - as far as they
exist in your computer. You can find out easily if the avr-gcc has
already been installed or not via a console as e.g.

> which avr-gcc

- 30 -

If a path is displayed, a version is already installed. So just enter:

> avr-gcc --version

and look at the output. If the displayed version is smaller than
3.4.6, you have to uninstall in any case this obsolete version.

If the version number lies between 3.4.6 and 4.1.0, you can try to
compile programs (see following chapter). If it fails, you have to
install the new tools. We will install hereafter the currently most up-
dated version 4.1.1 (status March 2007) together with some impor-
tant patches.

If the packages above do not appear in the package manager alt-
hough an avr-gcc has definitely been installed, you need to erase
manually the relevant binary files- i.e.search in all /bin, /usr/bin etc.
directories for files starting with “avr” and erase these (of course
ONLY these files and nothing else!). Eventually existing directories
as /usr/avr or /usr/local/ avr must also be erased.

Important: You have to make sure that the normal Linux develop-
ment tools as GCC, make, binutils, libc, etc. are installed prior to
compiling and installing! The best way to do so is via the package
manager of your distribution. Every Linux distribution should be
supplied with the required packages on the installation CD or up-
dated packages are available in the internet.

Make sure that the “texinfo” program is installed. If not, please in-
stall the relevant package before you continue - otherwise it will not
work!

Having done that, you can start with the installation itself.

Now you have two options: either you do everything manually or
you use a very simple to use installation script.

We recommend to try the installation script first. If this doesn’t
work, you can still install the compiler manually.

- 31 -

Attention:
You should have enough free disk space on your hard disk!
Temporarily more than 400Mb are required. Over 300Mb can be
erased after the installation but during the installation, you need all the
space.

Many of the following installation steps require ROOT RIGHTS, so
please log in with “su” as root or execute the critical commands with
“sudo” or something similiar as you have to do it in Ubuntu e.g. (the
installation script, mkdir in /usr/local directories and make install require
root rights).

Please note in the following the EXACT spelling of all commands!
Every sign is important and even if some commands look a bit strange,
it is all correct and not a typing mistake! (<CD-ROM-drive> has of
course to be replaced by the path of the CD-ROM drive!)

The folder on the CD:

<CD-ROM drive>:\Software\avr-gcc\Linux

contains all relevant installation files for the avr-gcc, avr-libc and
binutils.
First of all, you have to copy all installation files in a directory on your
hard disk - this applies for both installation methods! We will use
the Home directory (usual abbreviation for the current home directory is
the tilde: „~“):

> mkdir ~/Robot Arm
> cd <CD-ROM drive>/Software/avr-gcc/Linux
> cp * ~/Robot Arm

After the successful installation you can erase the files to save space!

- 32 -

Automatic Installation Script

Once you have made the script executable via chmod, you can start
immediately:

> cd ~/Robot Arm
> chmod -x avrgcc_build_and_install.sh
> ./avrgcc_build_and_install.sh

Answer “y” to the question if you want to install with this configura-
tion or not.

PLEASE NOTE: The compilation and installation will take some time
depending on the computing power of your system (e.g about 15
min. on a 2GHz Core Duo Notebook. Slower systems will need lon-
ger).

The script will include also some patches. These are all the .diff files
in the directory.
If the installation was successful, following message will be display-
ed:

(./avrgcc_build_and_install.sh)
(./avrgcc_build_and_install.sh) installation of avr GNU tools complete
(./avrgcc_build_and_install.sh) add /usr/local/avr/bin to your path to use the avr
GNU tools
(./avrgcc_build_and_install.sh) you might want to run the following to save disk
space:
(./avrgcc_build_and_install.sh)
(./avrgcc_build_and_install.sh) rm -rf /usr/local/avr/source /usr/local/avr/build

As suggested, you can execute
rm -rf /usr/local/avr/source /usr/local/avr/build
This erases all temporary files that you will not need anymore.

You can skip the next paragraph and set the path to the avr tools.

If the execution of the script failed, you have to look attentively
to the error message (scroll the console up if necessary). In most
cases it is just a matter of missing programs that should have been
installed earlier (as e.g. the before mentioned texinfo file). Before
you continue after an error, it is recommended to erase the already
generated files in the standard installation directory “/usr/local/avr“
– preferably the whole directory.

- 33 -

If you don’t know exactly what has gone wrong, please save all
command line outputs in a file and contact the technical support.
Please join always as much information as possible. This makes it
easier to help you.

GCC for AVR

The GCC is patched, compiled and installed a bit like the binutils:

> cd ~/Robot Arm> bunzip2 -c gcc-4.1.1.tar.bz2 | tar xf -
> cd gcc-4.1.1
> patch -p0 < ../gcc-patch-0b-constants.diff
> patch -p0 < ../gcc-patch-attribute_alias.diff
> patch -p0 < ../gcc-patch-bug25672.diff
> patch -p0 < ../gcc-patch-dwarf.diff
> patch -p0 < ../gcc-patch-libiberty-Makefile.in.diff
> patch -p0 < ../gcc-patch-newdevices.diff
> patch -p0 < ../gcc-patch-zz-atmega256x.diff
> mkdir obj-avr
> cd obj-avr
> ../configure --prefix=$PREFIX --target=avr --enable-
languages=c,c++ \
--disable-nls --disable-libssp –with-dwarf2
> make
> make install

After the \ just press Enter and continue to write. This way the com-
mand can be spread over several lines, but you can also just drop it.

AVR Libc

And last but not least the AVR libc:

> cd ~/Robot Arm
> bunzip2 -c avr-libc-1.4.5.tar.bz2 | tar xf -
> cd avr-libc-1.4.5
> ./configure --prefix=$PREFIX --build=`./config.guess` --host=avr
> make
> make install

- 34 -

Important: at –build=`./config.guess` make sure to put a backtick
` (à <-- the grave accent on the a!) and not a normal apostrophy
or quotation marks as this wouldn’t work.

Set the Path

You must make sure now that the directory /usr/local/avr/bin is
registered in the path variable otherwise it will be impossible to
retrieve the avr-gcc from the console or from the makefiles. To
that end, you have to enter the path in the file /etc/profile or /etc/
environment or similiar (varies from one distribution to another) –
separated by a colon “:” from the other already existing entries. It
could look in the file like:

PATH=”/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/usr/local/avr/bin“

Now enter in a console “avr-gcc -–version“ as described above. If it
works, the installation was successfull!

- 35 -

Manual Installation

If you prefer to install the compiler manually or the installation via
th script failed, you can follow the instructions below.

The description is based on following article:

http://www.nongnu.org/avr-libc/user-manual/install_tools.html

that is also included on the CD in PDF format in the AVR Libc docu-
mentation:

<CD-ROM drive>:\Software\Documentation\avr-libc-user-manual-1.4.5.pdf

Our description here is much shorter but includes a few important
patches. Without these, some tings will not work properly.

First of all we have to create a directory in which we wil install all
tools. That should be /usr/local/avr.
Also enter in a console AS A ROOT:

> mkdir /usr/local/avr
> mkdir /usr/local/avr/bin

It must not necessarily be this directory. We just create the variable
$PREFIX for this directory:

> PREFIX=/usr/local/avr
> export PREFIX

This must be added into the PATH variable:

> PATH=$PATH:$PREFIX/bin
> export PATH

- 36 -

Binutils for AVR

Now you must unpack the sourcecode of the binutils and add a few
patches.
We suppose in our example that you have copied everything into the
home directory ~/Robot Arm:

> cd ~/Robot Arm
> bunzip2 -c binutils-2.17.tar.bz2 | tar xf -
> cd binutils-2.17
> patch -p0 < ../binutils-patch-aa.diff
> patch -p0 < ../binutils-patch-atmega256x.diff
> patch -p0 < ../binutils-patch-coff-avr.diff
> patch -p0 < ../binutils-patch-newdevices.diff
> patch -p0 < ../binutils-patch-avr-size.diff
> mkdir obj-avr
> cd obj-avr

Now execute the configure script:

> ../configure --prefix=$PREFIX --target=avr --disable-nls

This script detects what is available in your system and generates
suitable makefiles. Now the binutils can be compiled and installed:

> make
> make install

Depending on the computing power of your system, this can take a
few minutes. That applies also to the next two sections, especially to
the GCC!

Java 6

The RobotLoader (see Info below) has been developed for the Java
platform and is suitable for Windows and Linux (theoretically also for
operating systems like OS X but AREXX Engineering is unfortunately
not yet in a position to give official support). To make it work, you
need to install an updated Java Runtime Environment (JRA). It is
often already installed on the computer but it must be at least version
1.6 (= Java 6)! If you have no JRE or JDK installed, you must install
the supplied JRE 1.6 from SUN Microsystems or alternatively
download a newer version from;
http://www.java.com or http://java.sun.com.

- 37 -

Windows

The JRE 1.6 for Windows is in following folder:

<CD-ROM drive>:\Software\Java\JRE6\Windows\

Under Windows the installation of Java is very simple. You just have
to start the setup and follow the instructions on the screen - that’s
it. You can skip the next paragraph.

Linux

Under Linux the installation doesn’t present any major problems
although some distributions require some manual work.

In the folder:

<CD-ROM drive>:\Software\Java\JRE6\

you will find the JRE1.6 as an RPM (SuSE, RedHat etc.) and as a
self-extracting archive “.bin“. Under Linux it is advisable to look for
Java packages in the package manager of your distribution (key-
words e.g. „java“, „sun“, „jre“, „java6“ ...) and use the packages of
your distribution rather than those on the CD-ROM! However make
sure to install Java 6 (=1.6) or a newer version but definitely not an
older one!

Under Ubuntu or Debian, the RPM archive doesn’t work directly. You
will have to use the package manager of your distribution to find a
suitable installation package. The RPM should however work well
with many other distributions like RedHat/Fedora and SuSE. If not,
you always have the solution to unpack the JRE (e.g. to /usr/lib/
Java6) from the self-extracting archive (.bin) and set manually the
paths to the JRE (PATH and JAVA_HOME etc.).

Please refer to the installation instructions from Sun that you will
find also in the above mentioned directory and on the Java website
(see above).

- 38 -

You can check if Java has been correctly installed by entering
the command “java-version” in a console. The output should be
approximately as follows:

java version “1.6.0”
Java(TM) SE Runtime Environment (build 1.6.0-b105)
Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)

If the output is totally different, you have either installed the wrong
version or there is another Java VM installed in your system.

Robot Loader

The Robot Loader has been developed to load easily new programs
and all extension modules into the Robot Arm (as long as the modu-
les are fitted with a compatible bootloader). Moreover it contains a
few useful extra functions as e.g. a simple terminal program.

It is not necessary to install the RobotLoader. Just copy the program
somewhere in a new folder on the hard disk.

<CD-ROM drive>:\Software\RobotLoader\RobotLoader.zip

Unpack the program somewhere on your hard disk e.g. in a new
folder C:\Programme\RobotLoader (or similiar). This folder contains
the
RobotLoader.exe file that you can start with a double-click.

The Robot Loader program itself is in the Java archive (JAR) Robot-
Loader_lib.jar. Alternatively you can start this via the command line:

Under Windows:

java -Djava.library.path=”.\lib” -jar RobotLoader_lib.jar

Linux:

java -Djava.library.path=”./lib” -jar RobotLoader_lib.jar

- 39 -

The long -D option is necessary to enable the JVM to find all used
libraries. Windows doesn’t require this and you can just start with the
.exe file. Linux requires the shell script ”RobotLoader. sh“. It might
be necessary to make the script executable (chmod -x ./RobotLoader.
sh). After that you can start it in a console with “./RobotLoader.sh“.

It is advisable to create a shortcut on the desktop or in the start
menu to make the start of the Robot Loader more convenient. Under
Windows make a right click on the RobotLoader file.exe and then click
on “Desktop (create shortcut)” in the “Send to” menu.

Robot Arm Library, Robot Arm CONTROL Library and Example
Programs

The Robot Arm Library and the related example programs are in a zip
archive on the CD:

<CD-ROM drive>:\Software\Robot Arm Examples\Robot ArmExamples
[MINI].zip

Just unpack them directly into a directory at your convenience on the
hard disk. It is recommended to unpack the example programs into
a folder on a data partition. Or in the “My files” folder in a sub-folder
“Robot Arm\Examples\“ or else under Linux into the Home directory.
It’s entirely up to you.

The individual example programs will be discussed later in the
software chapter!

- 40 -

7. Programmer and Loader

To load a HEX Robot Arm program from the PC into the Robot Arm,
we will use the USB programming adaptor and our RobotLoader
software.

The loose USB port adaptor transmitter/receiver (transceiver) in-
cluded in the package must be connected on one side to a USB port
of the computer and on the other side to the Prog/UART port of the
Robot Arm PCB.

The program upload into the Robot Arm erases automatically the
previously existing program.

USB Programming adaptor

RobotLoader software

- 41 -

7.1. Robot Loader

As said, the RobotLoader has been developed to upload easily new
programs into the Robot Arm and into all our robots (provided that
they contain a compatible bootloader).

RobotLoader

If the voltage
drops below
< 6.7 V,
a warning is
displayed.

Other useful extra functions are built-in such as a simple terminal
program.

Terminal window

The RobotLoader itself doesn’t need to be installed. Just copy the
program somewhere in a new folder on the hard disk.

- 42 -

7.2. Connection of the USB interface – Windows

Linux users can skip to the next section!

There are several options to install the USB interface, the easiest
being the installation of the driver BEFORE the first connection
of the hardware.

The CD contains an installation program for the driver.

For 32 and 64 Bit Windows 7, XP, Vista, Server 2003 and
2000 systems:

<CD-ROM drive>:\Software\USB_DRIVER\Win2k_XP\CDM_Setup.exe

For old Win98SE/Me systems, such a handy program does
unfortunately not exist. You need to install an older driver manually
after connecting the equipment (see below).

Just execute the installation program. There will just be a short note
that the driver has ben installed and that’s all.

Now you can connect the USB interfac to the PC. PLEASE DO NOT
CONNECT TO THE ROBOT YET! Just connect to the PC via the USB
lead. Please touch the PCB of the USB interface only at the edges or
at the USB plug or at the plastic shell of the programming plug (see
safety instructions on static discharges)! Please avoid touching any
of the components on the PCB, soldering points or contacts of the
IDE connector unless absolutely necessary in order to prevent static
discharges!

The previously installed driver will be used automatically for the
device without any help from your side. Under Windows XP/2k small
speech bubbles appear at the bottom above the task bar. The last
message should be “The device has been successfully installed and
is ready for use!”.

If you have connected the USB interface before the
installation (or use Win98/Me) – it doesn’t matter so much.
Windows will ask you for a driver. This installation method is also
possible. The driver is also in unpacked format on the CD.

- 43 -

If you are in this situation, a dialogue appears (under Windows) to
install the new driver. You have to indicate the path to the system
where it can find the driver. Under Windows 2k/XP you need to
select first the manual installation and not to look for a web service.
On our CD the driver is in the above mentioned directories.

So, just indicate the directory for your Windows version and even-
tually a few other files that the system doesn’t find automatically
(they are all in the directories mentioned below!) ...

Under Windows XP and later versions there is often a message that
the FTDI drivers are not signed/verified by Microsoft (normally not
here as the FTDI drivers are signed). This is irrelevant and can be
confirmed without any problem.

Operation

For 32 and 64 Bit Windows 7/8, XP, Vista, Server 2003 and
2000 systems:

<CD-ROM drive>:\Software\USB_DRIVER\Win2k_XP\FTDI_CDM2\

For older Windows 98SE/Me systems:

<CD-ROM drive>:\Software\USB_DRIVER\Win98SE_ME\FTDI_D2XX\

After the installation of the driver a re-start of the computer may be neces-
sary with older versions like Win98SE! PLEASE NOTE: Under Win98/Me only
one of both drivers is working: Either Virtual Comport or the D2XX driver
from FTDI! Unfortunately there is no driver that offers both functions. Nor-
mally there is no virtual comport available as the RP6Loader under Windows
uses as a standard the D2XX drivers (you can change this - please contact
our support team!).

Check the Connection of the Device

To check if the device has been correctly installed you can use the
device manager as an alternative to the RobotLoader under Win-
dows XP, 2003 and 2000: Right click on My Computer --> Properties
--> Hardware --> Device manager

- 44 -

OR alternatively: Start --> Settings --> Control panel --> Per-
formance and Maintenance --> System --> Hardware --> Device
manager and check there in the tree view under “Connections (COM
and LPT)” if you find a “USB-Serial Port (COMX)” - the X replacing
the port number, or look under “USB serial bus controller“ for a
“USB Serial Converter“ !

If you wish to uninstall the driver some day

If ever you wish to uninstall the driver (no, not now - this is just
a hint if you need this some day): If you have used the CD ROM
installation program, you can uninstall it directly via Start --> Set-
tings --> Control panel --> Software. In the displayed list you will
find an item “FTDI USB Serial Converter Drivers“ – select it and click
on “uninstall”.

If you have installed the driver manually, you can execute the pro-
gram ““FTUNIN.exe” in the directory dedicated to the USB driver for
your system! Warning: USB-->RS232 adaptors with FTDI chip set
often also use this driver!

- 45 -

7.3. Connection of the USB Interface – Linux

Windows users can skip this section!

Linux systems with kernel 2.4.20 or higher already include the
required driver (at least for the compatible previous model FT232BM
of the chip on our USB interface, the FT232R). The hardware is au-
tomatically recognized and you have nothing else to do. In case of
a problem, you can get Linux drivers (and support and maybe also
newer drivers) directly from FTDI:

http://www.ftdichip.com/

Once the hardware has been connected, you can check under Linux
via: cat /proc/tty/driver/usbserial

if the USB serial port has been correctly installed. This is normally all
you have to do.

It is worth to mention that the Robot Loader uses under Windows
D2XX drivers and the full USB designations appear in the port list
(e.g. ”USB0 | Robot USB Interface | serialNumber“). Whereas under
Linux the virtual comport designations appear such as /dev/ttyUSB0,
/dev/ttyUSB1 etc.. The normal com ports are equally displayed as
“dev/ttyS0“ etc.. In this case you have to try which port is the correct
one!

Unfortunately Linux doesn’t have such a convenient driver that does
both. Therefore it made more sense to use the Virtual Comport dri-
vers that are included in the kernel anyway. The installation of a D2XX
driver would require quite a lot of manual work....

Finalization of Software Installation

Now the installation of the software and the USB interfaces is com-
pleted! You just need to copy the most important files from the CD on
a hard disk (especially the complete “Documentation” folder and, if
it hasn’t been done yet, the example programs). This avoids to look
constantly for the CD if you need these files. The folders on the CD
are all named in such a way that they can be easily allocated to the
relevant software packages or documentation!

If you “loose” the CD one day, you can download the most important files as this manual, the RobotLoader
and the example programs from the AREXX home page. You will find there also the links to the other software
packages that you require.

- 46 -

7.4. Testing the USB Interface and starting the
 RobotLoader
The next step is a test of the program upload via the USB interface.
Connect the USB interface to the PC (always connect the PC first!)
and the other end of the 10-pin ribbon cable to the “PROG/UART”
connector on the Robot Arm. (Robot Arm MUST BE SWITCHED OFF!)
The 10-pin ribbon cable is mechanically protected against polarity
inversion. As long as it is not forced, it can’t be connected the wrong
way round.

Once you have selected your language, you have to re-start the Ro-
bot Loader to validate the changes!

Open a port - Windows

If more ports exist, you can identify the port via the name “Robot
USB Interface“ (or „FT232R USB UART“). Behind the port name the
programmed serial number is displayed.

If no ports are displayed, you can refresh the port list via the menu
item “RobotLoader-->Refresh Portlist“ !

 WARNING!

If the voltage drops below < 6,7 V, a warning is displayed.

Then start the RobotLoader. Depending
on which language you have selected, the
menus might have a bit different names. The
screen shots show the English version. Via
the menu item “Options->Preferences“ you
can select under “Language /Sprache“ the
required language (English or German) and
then click on OK.

Select the USB port. As long as no other
USB->Serial Adaptor with FTDI controller
is connected to the PC, you will see only
one single entry that you have to select.

- 47 -

7.5. Open a port – Linux
Linux handles the USB serial adaptor like a normal comport. The
installation of the D2XX driver from FTDI would not be as simple as
that under Linux and the normal virtual comport (VCP) drivers are
included anyway in the current Linux kernels. It works almost the
same as under Windows. You just need to find out the name of the
Robot Arm USB interface and make sure that the USB port is not
unplugged from the PC as long as the connection is open (otherwise
you might have to re-start the RobotLoader to re-connect). Under
Linux the names of the virtual comports are “/dev/ttyUSBx“, x being
a number e.g. “/dev/ttyUSB0“ or “/dev/ttyUSB1“. The names of the
normal comports under Linux are “/dev/ttyS0“, „/dev/tty- S1“ etc..
They also show up in the port list as far as they exist.

The RobotLoader remembers - if there are several ports - which port
you have used last time and selects this port automatically when
you start the program (in general, most of the settings and
selections are maintained).

Now you can click on the button “Connect“! The RobotLoader will
open the port and test if the communication with the bootloader on
the robot is working. The black field “Status” on the bottom should
show the message “Connected to: Robot Arm ...” or similiar together
with an information about the currently measured voltage. If not,
just try again! If it still doesn’t work, there is a mistake! Switch the
robot off immediately and start searching for the error.

If the voltage is too low, a warning is displayed. You should
immediately charge the accumulators (preferably even earlier when
the voltage drops below 6,7V)!

- 48 -

7.6. SELFTEST

The yellow voltage LED lights up when the Robot Arm is switched
on.

The status LED Blinks off when a HEX file is uploaded.
If this worked, you can execute a small selftest program to test the
functioning of all robot systems. Please click on the button “Add” on
the bottom of the Robot Loader window and select the file RobotAr-
mExamples [MINI], „Example_11_Selftest\RobotArm_Selftest.hex“
in the example directory. This file contains the selftest program in
hexadecimal format - that’s why this kind of program file is called
“hex file”. The file just selected appears afterwards in the list. This
way you can add other hex files from your own programs and from
the examples programs (see screen shot where some hex files have
already been added). The Robot Loader is able to manage several
categories of hex files.

This allows to sort the files in a clear way e.g. if several program-
mable extension modules are mounted on the robot or different
program versions are used. The list is automatically saved at the
end of the program. Of course only the paths to the hex files are
saved, not the hex files themselves. If you work on a program, you
just need to add and select the hex file once. Then you can load the
new program into the microcontroller after every re-compiling of
the program. (you can also use the key combination [STRG+D] or
[STRG+Y], to start the program directly after the transfer). The path
names are of course totally different under the various operating
systems. Nevertheless the RobotLoader suits both, Windows and
Linux, without any changes, as there is a separate list for Windows
and Linux.

Either you continue now with the other example programs
(Examples) of the Robot Arm or else you start with your own soft-
ware programming.

WARNING!

If the voltage drops below < 6,7 V, a warning is displayed.

- 49 -

Please select the “RobotArm_Selftest.hex“ file in the list and click on
the “Upload!“ button on the top right just below the progress bar.

The program will now be transferred into the MEGA64 processor on
the Robot Arm. This should not take more than a few seconds (max.
5 seconds for the selftest program).

Switch to the tab (at the bottom of the window!) “Terminal“! Alter-
natively you can also switch to terminal via the menu item “View”.

Now you can execute the selftest and the calibration of the Robot
Arm. Press the switch Start/Stop Reset on the Robot Arm to start
the program. Later you can do this alternatively via the RobotLoader
menu --> Start or the key combination [STRG]+[S]. However this
time you can test if the switch works properly!

If an error occurs in the selftest, switch the robot off immediately
and start searching for the mistake.

IT IS RECOMMENDED TO START WITH THE CALIBRATION
OF THE ROBOT ARM! SEE PAGE 50.

Important!
The “ISP/BOOT” Jumper
should be in left position for
normal use, see picture below.

USE THE CORRECT V3 PRO OR MINI SOFTWARE!

- 50 -

7.7. Calibration

Start the calibration program to calibrate the robot.

To this end, please click on the button “Add” at the bottom of the
RobotLoader window and select the file RobotArmExamples [MINI],
„Example_11_Selftest\RobotArm_Selftest.hex“ in the example direc-
tory.

This file contains the selftest program in hexadecimal format. The just
selected file will appear subsequently in the list
(see screenshot).

Select C
(C - Calibrate) in the
calibration program to
start calibration.

 Bring all servomotors into central
 position so that the Robot Arm
looks
 like on page 51.
 The servomotors 2-6 are
 approximately in a central position
 and the finger (servo 1) is almost
 closed.

Once the calibration (C - Calibrate) is completed, the robot can
execute following selftest. The result of the calibration is saved in
ATMEGA.

- 51 -

Calibration position

Servo 1
Finger

Servo 2
Rotate wrist

Servo 5
Shoulder

Servo 4
Elbow

Servo 3
Bend wrist

Servo 6
Base (azimuth)

- 52 -

7.8. Keyboard Test

The set is supplied with a keyboard that can be connected to the
Robot Arm. It is a good option for simple demonstrations and allows
us to practice the control of a robot arm via a keyboard.

The keyboard is fitted with 6 control keys and 4 special keys for later
extensions.

If we want to test the Robot Arm via the keyboard, we need to
transfer the appropriate hex program into the robot’s microproces-
sor.

Please click on the button “Add” on the bottom of the RobotLoader
window and select the file RobotArmExamples, “RobotArm_Key_
Board.hex“ in the example directory.

Select the file „RobotArm_Key_Board.hex“ in the list and press
subsequently the “Upload!“ button on the top right side below the
progress bar.

Having done that, you can control the Robot Arm simply via the keys
on the keyboard.

Keyboard lead

PCB Keyboard

USE THE CORRECT PRO OR MINI SOFTWARE!

- 53 -

8.0. RACS Software
RACS (Robot Arm Control Software) is the easiest way to control and
program the Robot Arm. Programming via the RACS method requires the
RobotLoader software and the USB programming adaptor.

Prior to using the robot, you need to upload the HEX software RAC-MINI.
hex into the Flash memory of the processor.

Connect the programming/control lead to the USB port on your computer
and start the Loader software. Following user interface is displayed:

 Fig. 1

If no USB port appears in the list “Step 1: Select a port”, make sure that the
lead is connected and the programmer’s drivers are installed. You can recall
the port list via the menu:
RobotLoader -> Refresh port list. Select the port and click on “Connect”.

Select the appropriate .hex file in step 2
– Click on “Add”: RACV3-MINI.HEX

USE THE CORRECT V3 PRO OR MINI SOFTWARE!

- 54 -

In step 3 click on the button “Upload” to import the file.

If you want to operate the Robot Arm, you have to disconnect the
RobotLoader in Step 1 by clicking on the button “Close”. If you close the
program, the connection is automatically interrupted.

Please make sure that there is no connection between the Loader software
and the Robot Arm, otherwise the robot can’t be controlled via the RACS
software.

7.1. RACS Instruction Manual

The Robot Arm can be controlled very easily via the RACS software. A link is
established between the programming/control lead and then the motors of
the Robot Arm react to the slider positions set via the mouse. The current
positions can be saved, changed and erased in the list box in the lower part
of the user interface. This generates a list containing the individual positi-
ons that can be saved as a file on the computer by clicking on the button
“Save”. This step list can be uploaded any time.

Important !!!
The robot monitors the motor current of every individual servomo-
tor. If the threshold of a servo is exceeded - e.g. during a collision
or overload - the text in the RACS software starts flashing. In this
case, the robot must be driven back to its last position as quickly as
possible or the servopower in the RACS software must be disabled
(disable the checkbox “servopower”).

Otherwise the Robot Arm might be definitely damaged!!!

- 55 -

7.2. RACS - Connection

1. Double-click on the Robot Arm Control Software to start it,
 following interface is displayed:

 Fig. 2

2. In the dropdown menu are listed all serial interfaces

 Fig. 3

3. Plug in the USB programmer

4. Click on Update button. When you look again that the dropdown
 menu, you will see an additional interface. This interface has been
 initialized by plugging in the USB programmer.

Attention: The name of the interface differs from one computer to the
other!

- 56 -

5. Select the new interface

 Fig. 4

6. Enable the checkbox “Connect”

 Fig. 5

7. Enable the checkbox “servo power”

 Fig. 6

8. Move the slider to control the servos.
 If an error occured during the establishment of the connection,
 following window appears. The connections must be established
 again (repeat steps 2-6 and check the interface).

 Fig. 7

- 57 -

7.3. RACS – Automated Position Control

Following controls are available in the window below:

Add: this button adds the current slider position to the list

Replace: the selected list item will be replaced by the current slider
 positions

Insert: the current slider positions will be inserted above the selected
 list item

Clear: the selected list item will be erased

Save: the list items will be saved in a file

Load: the list items are uploaded from a file
 (Caution, the current list items will be erased!)

Run: The list items are processed in sequence starting at the top.
 If the “Repeat” option has been enabled, the Robot Arm will
 keep processing all items continuously.

Step Time: The step time defines how long (in seconds) the robot will wait
 until it processes the next item in the list. If the list contains only
 very short travels, the selected time may be short. If, on the
 contrary, very long travels have been programmed e.g. full
 180° servo motions, the selected time must be set longer as the
 robot will not reach its target position and will proceed
 prematurely to the next step item.

Pause: The process is paused
Stop: The process is stopped

- 58 -

7.3.1 RACS – WIRELESS
With the RACS Software and the AREXX ARX-APC-220 set, you can control the
Robot Arm also wirelessly. Below we describe step by step how it works:

- Connect the RP6v2 Programmer and the APC-220 to the PC, exactly
 how it is described on the CD.

- Connect the other APC to the PCB of the Robot Arm (see page 16).

- Upload the Wireless Racs HEX data into the Robot Arm processor.
- Select the correct COM port in the RACS software.
 * Push the start button (Robot Arm PCB)
 * Enable --> Wireless - Connect and Servo Power

Now you can control the Robot Arm wirelessly.

7.3.2 ANDROID – PROGRAM
Our ARX-BT03 set enables you to control the Robot Arm by Bluetooth or an
ANDROID application.

Follow the instructions below:
- Connect the Bluetooth Module to the PCB of the Robot Arm
 (see page 16).
- Upload the ANDROID HEX data into the Robot Arm processor.
- Upload the ANDROID APK data into your smartphone or tablet.
 You can find this data on the CD an in the Google Play Store.

- 59 -

8.0. Programming the Robot Arm
Now we are gradually coming to the programming of the robot.

Setting up the source text editor
First of all, we need to set up a little development environment. The
so-called “source text” (also called “sourcecode”) for our C program
must be fed into our computer one way or the other!

To this end, we will definitely not use programs like OpenOffice or
Word! As this might not be obvious for everybody, we stress it here
explicitly. They are ideally suited to write manuals like this one, but
they are totally inappropriate for programming purposes. Source
text is pure text without any formatting. The compiler is not inte-
rested in font size and colour...

For a human being, it is of course much clearer if some keywords or
kinds of text are automatically highlighted by colours. These functi-
ons and some more are contained in Programmers Notepad 2 (ab-
beviated hereafter by “PN2”) that is the source text editor that we
will use (ATTENTION: Under Linux you need to use another editor
that offers about the same functions as PN2. Usually, several editors
are pre-installed! (e.g. kate, gedit, exmacs or similiar)). In addition
to the highlighting of keywords and others (called “syntax highligh-
ting”) it offers also a rudimentary project management. This allows
to organise several source text files in projects and to display in a
list all files related to a project. Moreover you can easily retrieve
programs like the AVR-GCC in PN2 and get the programs convenien-
tly compiled via a menu item. Normally the AVR-GCC is a pure com-
mand line program without graphic interface...

You will find more recent versions of Programmers Notepad on the
project homepage: http://www.pnotepad.org/

The newest versions of WINAVR don’t require the setting up
of menu items anymore!

PLEASE NOTE:
In this section we don’t describe anymore how you have to
set up menu items in PN2 as the newest WINAVR versions
have done this already for you!

- 60 -

See on page 56 “Open and compile an example project” how
you can open an example project!

If you have opened an example project, it should look a bit like this
on the PN2 screen:

“Robot ArmExamples.ppg“ file.
This is a project group for PN2
that uploads all example programs
plus the Robot Arm Library into
the project list (“Projects“) .

On the left hand side are shown all example projects, on the right
hand side the source text editor (with the mentioned syntax high-
lighting) and at the bottom the tools output (in this case the output
of the compiler). You can convert many other things in PN2 and it
offers many useful features.

- 61 -

Open and compile an example project

Now all example projects are conveniently at hand if you want to
refer to them at the beginning or look for functions in the Robot Arm
Library etc..

Open the first example program on top of the list (“01_Leds“ and
select file “01_Leds“) that appears on the left edge of the program
window! Just double-click on “01_Leds.c“! A source text editor is
displayed in a window inside the program.

An output area should appear on the bottom of the program window
of PN2. If not, you have to enable this area via the “View” menu
--> “Enable output” OR if the area is too small, increase the size by
pulling the edges with the mouse (the mouse cursor changes into a
double arrow at the upper edge of the grey area marked “output” at
the bottom of the program window...).

You can take a quick look at the program that you just opened with
the source text editor but you don’t need to understand right now
what is happening exactly. However as a first info: The green text
are comments that are not part of the actual program. They are
only used for description/documentation purposes.

Let’s test now if everything runs properly
and open the example projects:

Select in the “File“ menu the item “Open
Project(s)“.

A normal file section dialogue appears.
Search the folder “Robot Arm_Examples
[MINI]\“ in the folder into which you have
saved the example programs.

Open the “Robot ArmExamples.ppg“
file. This is a project group for PN2 that
uploads all example programs as well as
the Robot Arm Library into the project list
(“Projects“).

- 62 -

We will explan this in detail a bit further down (there is also a ver-
sion of this program WITHOUT comments so that you can see how
short the program is in fact. The comments inflate it a lot but are
necessary for the understanding. The uncommented version is also
useful to copy the code in your own programs!).

PN2 retrieves now the above mentioned “make_all.bat“ batch file.
This will on its turn retrieve the program “make“. More info about
“make“ will follow later.

The example program will now be compiled. The generated hex file
contains the program in the translated format for the microcontrol-
ler and can be uploaded and executed later. The compilation process
generates a lot of temporary files (suffixes like “.o, .lss, .map, .sym,
.elf, .dep“). Just ignore them. The newly set up tool “make clean”
will erase them all. Only the hex file is of interest for us. By the way,
the function “make clean” will not erase this file.

First of all we just want to test if the compi-
lation of programs works properly.

In the Tools menu on top both freshly instal-
led menu items (see fig.) should appear (or
the [WinAVR] inputs existing as a standard
in PN; whatever, it works normally with
both).

Please click now on “MAKE ALL“!

- 63 -

After the activation of the menu item MAKE ALL, following output
should display (below in a considerably shortened version! Some
lines may look of course a bit different):

> “make.exe” all
-------- begin --------
avr-gcc (WinAVR 20100110) 4.3.3
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Size before:
AVR Memory Usage

Device: atmega64
Program: 3074 bytes (4.7% Full)
(.text + .data + .bootloader)
Data: 68 bytes (1.7% Full)
(.data + .bss + .noinit)
EEPROM: 14 bytes (0.7% Full)
(.eeprom)

Compiling C: Robot Arm_Leds.c
avr-gcc -c -mmcu=atmega64 -I.
-gdwarf-2 -DF_CPU=16000000UL -Os -funsigned-char -funsigned-bitfields -fpack-
struct -fshort-enums -Wall
-Wstrict-prototypes -Wa,-adhlns=./Robot Arm_Leds.lst -std=gnu99 -MMD -MP -MF
.dep/Robot Arm_Leds.o.d Robot Arm_Leds.c -o Caterpillar_Leds.o

Linking: Robot Arm_Leds.elf
avr-gcc -mmcu=atmega16 -I. -gdwarf-2 -DF_CPU=16000000UL -Os -funsigned-char -funsigned-
bitfields
Creating load file for Flash: Robot Arm_Leds.hex
Creating load file for EEPROM: Robot Arm_Leds.eep
avr-objcopy -j .eeprom --set-section-flags=.eeprom=”alloc,load” \
 --change-section-lma .eeprom=0 --no-change-warnings -O ihex Robot Arm_Leds.elf
Robot Arm_Leds.eep || exit 0
Size after:
AVR Memory Usage

Device: atmega64
Program: 3074 bytes (4.7% Full)
(.text + .data + .bootloader)
Data: 68 bytes (1.7% Full)
(.data + .bss + .noinit)

EEPROM: 14 bytes (0.7% Full)
(.eeprom)
-------- end -------->
Process Exit Code: 0
> Time Taken: 00:04

- 64 -

The “Process Exit Code: 0“ at the end is most important. It means
that no error occurred during compilation. If another code appears
there, the sourcecode contains an error that must be corrected be-
fore it will work. In this case, the compiler will output various error
messages that give some more information.

Please note however that the “Process Exit Code: 0“ is not a guaran-
tee of a fully error-free program! The compiler will not find flawed
thinking in your program and it can’t prevent the robot from running
into a wall ;-)

IMPORTANT: You might find warnings and other messages further
above. These are often very helpful and always indicate important
problems! That’s why these always need to be solved. PN2 high-
lights warnings and errors by colours to make the identification
easier. Even the line number is indicated that the compiler is criti-
cizing. If you click on the coloured error message, PN2 skips in the
relevant editor directly to the faulty line.

The indication at the end “AVR Memory Usage“ is also very useful.

Size after:
AVR Memory Usage

Device: atmega64

Program: 3074 bytes (4.7% Full)
(.text + .data + .bootloader)

Data: 68 bytes (1.7% Full)
(.data + .bss + .noinit)

This means for the Atmega64 processor that our program has a
size of 3074 bytes and that 68 bytes of RAM are reserved for sta-
tic variables (you have to add to this the dynamic ranges for heap
and stack but this would go too far... just keep always at least a few
hundred bytes of memory free). We dispose in total of 64kb (65536
bytes) of Flash ROM and 2kb (2028 bytes) of RAM. On the 64kb,
2k are occupied by the bootloader - so we can only use 62kb. Make
always sure that the program fits into the available memory space!
(The RobotLoader doesn’t transfer the program if it is too big!)

- 65 -

This means that the example programs above leave 60414 bytes
of free space. The relatively short example program Example_01_
Leds.c is only so big because the Robot ArmBaseLibrary is included!
So, don’t worry, there is enough space for your programs and so
small programs usually don’t need so much memory space. The
function library on its own needs several kb of Flash memory but
makes your job much easier and therefore your own programs will
generally be quite small compared to the Robot ArmBaseLibrary.

The just compiled program can now be uploaded via the
RobotLoader into the robot. To do that, you have to add the newly
generated hex file into the list in the RobotLoader via the button
“Add”, select it and click on the “Upload” button exactly as you
did for the selftest program. After that you can switch back to the
terminal and look at the output of the program. Of course you need
to launch the execution of the program. The easiest way to do it
in the terminal is to press the key combination [STRG]+[S] on the
keyboard or to use the menu (or just to send an “s” - after a reset
you have to wait a little bit though until the message “[READY]” is
displayed in the terminal!). The key combination [STRG]+ [Y] is also
very convenient as the currently selected program is uploaded into
the Robot Arm and immediately started. This avoids to click on the
“Flash Loader” tab in the terminal or to use the menu.

The example program is very simple and is only composed of a
small LED running light and some text output.

-

- 66 -

As a conclusion

We hope that our robots have guided you on your way
into the world of robots. We share the conviction of our
Japanese friends that robots will become the next
technological revolution after computers and mobile
phones. This revolution will trigger new economical
impulses.

Unfortunately Japan, other Far East countries and also
the USA have largely overtaken Europe in this field.
Unlike Europe, technical courses start in Far East already
in the primary school and are an important part of the
education.

Our target in the development of our robots ASURO,
YETI, Caterpillar and Robot Arm is therefore:

TO TRAIN A SCIENTIFIC MIND

- 67 -

APPENDIX

- 68 -

A. CIRCUIT DIAGRAM ROBOT ARM RA2-HOBBY V3

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

2

AR
EX

X
En

gi
ne
er
in
g

Ne
rv
ist
ra
at
 1
6

80
13

 R
S
Zw

ol
le

Th
e
Ne

th
er
la
nd

s
4

RO
BO

T
AR

M
 v
3
- P

ro
ce
ss
or

20
13
02
14
-1

B
22
.0
3.
20
13

D
om

in
ik
 S
. H

er
w
al
d

Ti
tle

N
um

be
r:

D
at
e:

A
ut
ho
r:

R
ev
is
io
n:

Sh
ee
t

of

10
0n

C
23

06
03

10
0n

C
24

06
03

V
C
C

G
N
D

X
TA

L1
X
TA

L2

1
2

X
1

16
.0
00
M
H
z

18
p

C
18

06
03

18
p

C
19

06
03

G
N
D

G
N
D

R
X
D
1

TX
D
1

10
0n

C
22

06
03

10
n

C
21

06
03

G
N
D

G
N
D

10
uH

L2 In
du
ct
or
 0
60
3

M
R
ES

ET

10
K

R
10

06
03

V
C
C

SL
1

BL
U
E

1.
82
k

R
16

06
03

G
N
D

SL
2

BL
U
E

SL
3

BL
U
E

SL
4

BL
U
E

1.
82
k

R
15

06
03

1.
82
k

R
14

06
03

1.
82
k

R
13

06
03

LE
D
1

LE
D
2

LE
D
3

LE
D
4

123

IS
P/
B
O
O
T

H
ea
de
r 3

R
ES

ET
IS
P_
R
ES

ET

10
µF

 1
0V

C
25

08
05

10
0n

C
20

06
03

G
N
D

ST
A
R
T/
ST

O
P

B
U
TT

O
N

G
N
D

M
R
ES

ET

10
0K

R
12

06
03

G
N
D

SE
R
V
O
_C

U
R
R
EN

T1
SE

R
V
O
_C

U
R
R
EN

T2
SE

R
V
O
_C

U
R
R
EN

T3
SE

R
V
O
_C

U
R
R
EN

T4
SE

R
V
O
_C

U
R
R
EN

T5

U
BA

T
EX

T_
A
D
C

SE
R
V
O
_C

U
R
R
EN

T6

SC
L

SD
A

B
EE

PE
R

SE
R
V
O
1

SE
R
V
O
2

SE
R
V
O
3

SE
R
V
O
5

SE
R
V
O
4

SE
R
V
O
6

LE
D
1

LE
D
2

LE
D
3

LE
D
4

SE
R
V
O
_E

N

BO
A
R
D
_I
D

47
0R

R
11

06
03

G
N
D

SE
R
V
O
1_
D
_P
O
S

SE
R
V
O
1_
U
_P
O
S

PB
0/
SS

PB
1/
SC

K
PB

2/
M
O
SI

PB
3/
M
IS
O

PE
6/
IN
T6

PE
7/
IN
T7

PD
4

PD
6

PD
5

PD
7

PE
0/
R
X
D
0/
PD

I
PE

1/
TX

D
0/
PD

O

PA
1/
K
EY

1
PA

0/
K
EY

0

PA
3/
K
EY

3
PA

2/
K
EY

2

PA
5/
K
EY

5
PA

4/
K
EY

4

PA
7/
K
EY

7
PA

6/
K
EY

6

G
N
D

ST
A
R
T/
ST

O
P_
R
ES

ET

1
2

ST
H

H
ea
de
r 2

ST
A
R
T/
ST

O
P_
R
ES

ET

PE
N

1

PE
0
R
X
D
0/
(P
D
I)

2

PE
1
(T
X
D
0/
PD

O
)

3

PE
2
(X
C
K
0/
A
IN
0)

4

PE
3
(O
C
3A

/A
IN
1)

5

PE
4
(O
C
3B

/IN
T4

)
6

PE
5
(O
C
3C

/IN
T5

)
7

PE
6
(T
3/
IN
T6

)
8

PE
7
(IC

P3
/IN

T7
)

9

PB
0
(S
S)

10

PB
1
(S
C
K
)

11

PB
2
(M

O
SI
)

12

PB
3
(M

IS
O
)

13

PB
4
(O

C
0)

14

PB
5
(O

C
1A

)
15

PB
6
(O

C
1B

)
16

PB
7
(O

C
2/
O
C
1C

)
17

PG
3/
TO

SC
2

18

PG
4/
TO

SC
1

19

R
ES

ET
20

V
C
C

21
G
N
D

22

X
TA

L2
23

X
TA

L1
24

PD
0
(S
C
L/
IN
T0

)
25

PD
1
(S
D
A
/IN

T1
)

26

PD
2
(R
X
D
1/
IN
T2

)
27

PD
3
(T
X
D
1/
IN
T3

)
28

PD
4
(IC

P1
)

29

PD
5
(X

C
K
1)

30

PD
6
(T
1)

31

PD
7
(T
2)

32

PG
0
(W

R
)

33

PG
1
(R
D
)

34

PC
0
(A
8)

35

PC
1
(A
9)

36

PC
2
(A
10

37

PC
3
(A
11
)

38

PC
4
(A
12
)

39

PC
5
(A
13
)

40

PC
6
(A
14
)

41

PC
7
(A
15
)

42

PG
2
(A
LE

)
43

PA
7
(A
D
7)

44
PA

6
(A
D
6)

45
PA

5
(A
D
5)

46
PA

4
(A
D
4)

47
PA

3
(A
D
3)

48
PA

2
(A
D
2)

49
PA

1
(A
D
1)

50
PA

0
(A
D
0)

51

V
C
C

52
G
N
D

53

PF
7
(A
D
C
7/
TD

I)
54

PF
6
(A
D
C
6/
TD

O
)

55

PF
5
(A
D
C
5/
TM

S)
56

PF
4
(A
D
C
4/
TC

K
)

57

PF
3
(A
D
C
3)

58

PF
2
(A
D
C
2)

59

PF
1
(A
D
C
1)

60

PF
0
(A
D
C
0)

61

A
R
EF

62
G
N
D

63
A
V
C
C

64

IC
1

A
Tm

eg
a6
4A

-A
U

PE
2/
X
C
K
0/
A
IN
0

PC
0

PC
1

PC
2

PC
3

D
3

M
CL

41
48

1 2 3 4 5 6 7

R
F_
B
T_

EX
T

H
ea
de
r 7

1 2

EX
T2

H
ea
de
r 2

G
N
D

V
C
C

PE
0/
R
X
D
0/
PD

I
PE

1/
TX

D
0/
PD

O

PD
7

10
µF

 1
0V

C
26

08
05

1
1

2
2

SN
D

PI
EZ

O

B
EE

PE
R

G
N
D

10
K

R
37

06
03

10
K

R
38

06
03

V
C
C

A
P
C
2
2
0
 o
r
B
lu
e
to
o
th
 M

o
d
u
le
 e
x
p
a
n
si
o
n

- 69 -

B. CIRCUIT DIAGRAM POWER SUPPLY RA2-HOBBY V3

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

1

AR
EX

X
En

gi
ne
er
in
g

Ne
rv
ist
ra
at
 1
6

80
13

 R
S
Zw

ol
le

Th
e
Ne

th
er
la
nd

s
4

RO
BO

T
AR

M
 v
3
- P

ow
er
 S
up
pl
y

20
13
02
14
-1

B
14
.0
2.
20
13

D
om

in
ik
 S
. H

er
w
al
d

Ti
tle

N
um

be
r:

D
at
e:

A
ut
ho
r:

R
ev
is
io
n:

Sh
ee
t

of

V
IN

2

G
N
D

7
EN

3

C
O
M
P

6

PH
/O
U
T

8

V
SE

N
SE

5

SS
4

B
O
O
T

1

GND PAD

IC
3

TP
S5

43
32

G
N
D

G
N
D

1MR
4*

06
03

10
n

C
7

06
03

18
p

C
9

06
03

47
0p
f

C
8

06
03

24
.9
k

R
5

06
03

G
N
D

G
N
D

1.
82
k

R
6

06
03

10
k

R
7

06
03

G
N
D10
0n
F

C
10

06
03

10
k

R
3

06
03

G
N
D

G
N
D

V
_I
N

22
µF

C
11

12
06

22
µF

C
13
*

12
10

22
µF

C
12

12
06

10
µF

 2
5V

C
4

12
06

SE
R
V
O
_P
O
W
ER

10
µF

 2
5V

C
3*

12
06

C
15

47
0µ

F
25
V

1
D
1

M
B
R
S3

30

V
C
C

IN
3

O
U
T

2

G
N
D

1
TA

B
4

IC
2

N
C
P1

11
7S

T5
0

10
µF

 1
0V

C
17

08
05

G
N
D

G
N
D

2.
2µ

F
25
V

C
16

08
05

C
5

47
0µ

F
25
V

C
2

47
0µ

F
25
V

1

D
2

M
B
R
S3

30

1 23
PW

R
1

D
C
 JA

C
K

G
N
D

F4
.0
A

F1 FU
SE

_H
O
LD

ER

10
0k

R
1

06
03

24
.9
k

R
2

06
03

G
N
D

10
0n
F

C
6

06
03

U
BA

T

SE
R
V
O
_E

N

SE
R
V
O
_P
W
R

R
ED

1.
82
k

R
8

06
03

SE
R
V
O
_P
O
W
ER

G
N
D

M
A
IN
_P
W
R

Y
EL

LO
W

1.
82
k

R
9

06
03

V
C
C

G
N
D

C
1*

47
0µ

F
25
V

2
3 1

PW
R

SW
-S
PD

T

7
- 1

8V
m
ax
. 4
A

V
_I
N
_V

C
C

1 2

PW
R
2

H
ea
de
r 2

V
_I
N

G
N
D

1 2 3

PW
R
3

H
ea
de
r 3

V
_I
N G
N
D

4.
7µ

H

L1 In
du
ct
or

C
43
*

47
0µ

F
25
V

Se
ve
ra
l o
pt
io
na
l c
om

po
ne
nt
s,
 o
nl
y
pa
rti
al
ly
 a
ss
em

bl
ed

- 70 -

C. CIRCUIT DIAGRAM CONNECTORS RA2-HOBBY V3

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

4

AR
EX

X
En

gi
ne
er
in
g

Ne
rv
ist
ra
at
 1
6

80
13

 R
S
Zw

ol
le

Th
e
Ne

th
er
la
nd

s
4

RO
BO

T
AR

M
 v
3
- C

on
ne
ct
or
s

20
13
02
14
-1

B
22
.0
3.
20
13

D
om

in
ik
 S
. H

er
w
al
d

Ti
tle

N
um

be
r:

D
at
e:

A
ut
ho
r:

R
ev
is
io
n:

Sh
ee
t

of

135
6 4 2

79
10 8

1113
14 12

X
B
U
S1

SD
A

SC
L

M
R
ES

ET

V
C
C

G
N
D

135
6 4 2

79
10 8

1113
14 12

SP
I/I
O
1

R
X
D
1

TX
D
1

V
C
C

1
2

3
4

5
6

IS
P

M
R
ES

ET

V
C
C

G
N
D

PB
1/
SC

K

V
C
C

G
N
D

V
C
C G
N
D

G
N
D

IS
P_
R
ES

ET

12

SW
1

H
ea
de
r 2

EX
T_

A
D
C

PB
0/
SS

PB
1/
SC

K
PB

2/
M
O
SI

PB
3/
M
IS
O

M
R
ES

ET
PE

6/
IN
T6

PE
7/
IN
T7

PD
4

PD
6

PD
5

PD
7

PE
6/
IN
T6

M
O
SI

M
IS
O

PA
1/
K
EY

1
PA

0/
K
EY

0

PA
3/
K
EY

3
PA

2/
K
EY

2
PA

5/
K
EY

5
PA

4/
K
EY

4

PA
7/
K
EY

7
PA

6/
K
EY

6

PE
0/
R
X
D
0/
PD

I
PE

1/
TX

D
0/
PD

O

PE
2/
X
C
K
0/
A
IN
0

1 3 5
642

7 9
108

PR
O
G
/U
A
R
T

PC
0

PC
1

PC
2

PC
3

G
N
D

V
C
C

135
6 4 2

79
10 8

1113
14 12

IO
2

PE
0/
R
X
D
0/
PD

I
PE

1/
TX

D
0/
PD

O

SD
A

SC
L

G
N
D

SE
R
V
O
_P
O
W
ER

SE
R
V
O
1_
D
_P
O
S

G
N
D

12

SW
2

H
ea
de
r 2

SE
R
V
O
1_
U
_P
O
S

G
N
D

47
0R

R
35

06
03

47
0R

R
36

06
03

1 3 5
642

7
8

K
EY

B

1 2 3

SP
W
R

H
ea
de
r 3

1 2 3

V
C
C

H
ea
de
r 3

V
_I
N
_V

C
C

D
ua
l u
se
 w
ith

 W
ire

le
ss
 A
PC

22
0
SE

T
Pi
n

- 71 -

1
2

3
4

ABCD

4
3

2
1

D C B A
Ti

tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
7-

Ju
n-

20
10

Sh

ee
t

 o
f

Fi
le

:
F:

\硬
件

原
理

\m
in

i r
ob

ot
 A

R
M

\m
in

i r
ob

ot
.d

dbD
ra

w
n

By
:

D
1

1N
41

48

D
2

1N
41

48

SS
ER

V
O

1_
U

P

SE
RV

O
1_

D
W

N

PA
0

PA
1

D
3

1N
41

48

D
4

1N
41

48

SS
ER

V
O

2_
U

P

SE
RV

O
2_

D
W

N

PA
2

PA
3

PA
4

D
5

1N
41

48

D
6

1N
41

48

SS
ER

V
O

3_
U

P

SE
RV

O
3_

D
W

N

PA
0

PA
1

D
7

1N
41

48

D
8

1N
41

48

SS
ER

V
O

4_
U

P

SE
RV

O
4_

D
W

N

PA
2

PA
3

PA
5

D
9

1N
41

48

D
10

1N
41

48

SS
ER

V
O

5_
U

P

SE
RV

O
5_

D
W

N

PA
0

PA
1

D
11

1N
41

48

D
12

1N
41

48

SS
ER

V
O

6_
U

P

SE
RV

O
6_

D
W

N

PA
2

PA
3

PA
6

D
13

1N
41

48

D
14

1N
41

48

TA
N

K
_F

N
T

TA
N

K
_B

CK

PA
0

PA
1

D
15

1N
41

48

D
16

1N
41

48

TA
N

K
_R

IG
H

T

TA
N

K
_L

EF
T

PA
2

PA
3

PA
7

PA
5

PA
0

PA
1

PA
2

PA
3

PA
6

PA
7

PA
4

1
2

3
4

5
6

7
8

J1 ex
t k

ey
 p

ad

D. CIRCUIT DIAGRAM KEYBOARD RA2-HOBBY V3

- 72 -

E. PCB ROBOT ARM RA2-HOBBY V3

